Основным положением отечественной психологии в этом вопросе является положение о решающем значении социальных факторов в развитии способностей, ведущей роли социального опыта человека, условий его жизни и деятельности. Психические особенности не могут быть врожденными. Это целиком относится и к способностям. Способности всегда результат развития. Они формируются и развиваются в жизни, в процессе деятельности, в процессе обучения и воспитания. В индивидах должны существовать предпосылки, внутренние условия для развития способностей. А.Н. Леонтьев и А.Р. Лурия также говорят о необходимых внутренних условиях, делающих возможным возникновение способностей. Способности не заключены в задатках. В онтогенезе они не проявляются, а формируются. Задаток не потенциальная способность (а способность не задаток в развитии), так как анатомо-физиологическая особенность ни при каких условиях не может развиваться в психическую особенность. [10]
Среди наиболее важных компонентов математических способностей выделяются специфическая способность к обобщению математического материала, способность к пространственным представлениям, способность к отвлеченному мышлению. Некоторые исследователи выделяют также в качестве самостоятельного компонента математических способностей математическую память на схемы рассуждений и доказательств, методы решения задач и принципы подхода к ним. Отечественный психолог, исследовавший математические способности у школьников, В.А. Крутецкий дает следующее определение математическим способностям: «Под способностями к изучению математики мы понимаем индивидуально-психологические особенности (прежде всего особенности умственной деятельности), отвечающие требованиям учебной математической деятельности и обусловливающие на прочих равных условиях успешность творческого овладения математикой как учебным предметом, в частности относительно быстрое, легкое и глубокое овладение знаниями, умениями и навыками в области математики». [8]
Задача на построение
Задачей на построение называется предложение, указывающее, по каким данным, какими инструментами, какую геометрическую фигуру требуется построить (начертить на плоскости) так, чтобы эта фигура удовлетворяла определённым условиям. Решить задачу на построение с помощью циркуля и линейки – значит свес ...
Развитие музыкальных способностей как педагогическое средство управления
творческих способностей
Важнейшей в теории способностей является проблема их развития. С.А. Рубинштейн писал, что вопрос способностей должен быть слит с вопросом развития. Развитие человека в отличие от накопления опыта, овладения знаниями, умениями, навыками, - это и есть то, что представляет собой развитие как то новое, ...
Мотивы и потребности учащихся в занятиях физической культурой
Организация работы в области физического воспитания учащихся базируется в настоящее время, в основном, на использовании спотивно-диагностических нормативов и почти не учитывает мотивы и потребности молодежи в регулярных занятиях тем или иным видом двигательной активности. Преобразование в физическо ...
Задачи, стоящие перед высшей школой, требуют ее всестороннего совершенствования.
Инновационные процессы, идущие сегодня в системе образования наиболее остро ...