1) 6 4 + 5 = 26
2) 42 7 + 3 = 21
Запишите правильно примеры, используя те же числа (знаки действий можно использовать и другие).
Решение:
1) 6 5 – 4 = 26 или 5 4 + 6 = 26
2) 42 – 7 3 = 21 или 42 3 + 7 = 21
Шпунтик и его друзья из данных фигур составляли новые. Каждый из них из двух таких многоугольников, как показано на рисунке, составил новый и нашел сумму длин его сторон. Ответы у них получились разные, но у всех правильные. Как это могло быть и какие ответы они получили?
Решение:
И сказал Кощей Ивану-Царевичу: «Жить тебе осталось до утра. А утром я задумаю три цифры а, в и с, ты мне назовешь три числа м, н, и к. Тогда я назову тебе число ам + вн + ск, и ты должен отгадать, какие цифры я задумал. Не отгадаешь ¾ голова с плеч». Надо бы помочь Ивану-Царевичу. Что вы ему посоветуете?
Решение: Ученики, которые хорошо решают задачи на представление числа в виде суммы разрядных слагаемых и обратные им задачи, поймут идею решения предложенной задачи. Простейшее решение ¾ назвать числа 100, 10 и 1. Можно назвать и числа 200, 20, 2 или 300, 30,3 и так далее, но тогда названное Кощеем число Иван-Царевич должен делить на 2, 3 и так далее. Последние решения более интересные и требуют от учеников большей сообразительности.
Задачи с многовариантными решениями весьма полезны для внеклассных занятий в качества олимпиадных заданий, так как открываются возможности по-настоящему дифференцировать результаты каждого участника. Такие задачи могут с успехом использоваться и в качестве дополнительных индивидуальных заданий для тех учеников, которые легко и быстро справляются с основными во время самостоятельной работы на уроке, или для желающих в качестве дополнительных домашних заданий.
Большое значение, особенно для самых юных математиков, имеют задачи в стихах. Такие задачи интересны и доступны детям. Они вносят некоторую живость в занятие, воспринимаются детьми как некоторая игра. Кроме того, они воспитывают и эстетические чувства. Такие стихотворные задания учителю не сложно сочинить и самому, взяв за основу какую-либо задачу, можно использовать и стихи детских авторов, задав после прочтения вопрос.
Котик с мышкою дружил, мышке тапочки купил.
И на все 4 лапки натянула мышка тапки.
Побежала по тропинке, да споткнулась о травинку.
С лапки тапочка упала и куда-то запропала.
Тапку мышка не нашла и без тапочки пошла.
Сколько тапочек осталось у мышки?
Мышка зерна собирала, по 2 зернышка таскала.
Принесла уж 9 раз. Каков у мышки стал запас?
На двух малютках-яблоньках росли четыре яблока.
В три раза больше на одной. А сколько яблок на другой?
В 9 сели в электричку мы на станции «Пески»,
А в 12, как обычно, прибыли на «Василики».
Сколько времени в пути были мы? Ответ найди.
Мы не возьмемся в этой работе описывать все виды внеучебных математических задач, остановимся на рассмотренных выше. Укажем лишь, что учителю следует помнить при подборе заданий для проведения внеклассной работы по математике, насколько важно облечь математический вопрос в интересную для учащихся форму или внести в решение задачи такое незначительное, но любопытное затруднение, которое могло бы приучить детский ум к самостоятельности, или, наконец, предложить трудную на первый взгляд задачу, но решающуюся легко и неожиданным образом.
Таким образом, изучив учебно-методическую литературу по проблеме организации внеклассной работы по математике, можем сделать следующие выводы:
Методика развитие творческих способностей детей средствами театрализованной
деятельности
Творческие способности у детей проявляются и развиваются на основе театрализованной деятельности. Эта деятельность развивает личность ребенка, прививает устойчивый интерес к литературе, музыке, театру, совершенствует навык воплощать в игре определенные переживания, побуждает к созданию новых образо ...
Выбор ремесел. Критерий утилитарный,
психологический и педагогический
Но какому ремеслу надо учиться и учить? Прежде всего, постоянно полезному, которое не зависит от моды и не рассчитано только на праздных, богатых людей. Во взгляде на вещи Эмиль чужд предрассудка извращенных людей культуры. В обществе уважают искусства "как раз обратно их настоящей полезности& ...
Мониторинг в образовании
Это постоянное наблюдение за каким-либо процессом в образовании с целью выявления его соответствия желаемому результату или первоначальным предположениям. Мониторинг является одним из важнейших средств, благодаря которому изменяется само информационное пространство, так как повышается оперативность ...
Задачи, стоящие перед высшей школой, требуют ее всестороннего совершенствования.
Инновационные процессы, идущие сегодня в системе образования наиболее остро ...