Вся история геометрии и некоторых других разделов математики тесно связана с развитием теории геометрических построений. Важнейшие аксиомы геометрии, сформулированные основоположником научной геометрической системы Евклидом около 300 г. до н.э., ясно показывают какую роль сыграли геометрические построения в формировании геометрии. «От всякой точки до всякой точки можно провести прямую линию», «Ограниченную прямую можно непрерывно продолжать», «Из всякого центра и всяким раствором может быть описан круг» – эти постулаты Евклида явно указывают на основное положение конструктивных методов в геометрии древних.
Древнегреческие математики считали «истинно геометрическими» лишь построения, производимые лишь циркулем и линейкой, не признавая «законным» использование других средств для решения конструктивных задач. При этом, в соответствии с постулатами Евклида, они рассматривали линейку как неограниченную и одностороннюю, а циркулю приписывалось свойство чертить окружности любых размеров. Задачи на построение циркулем и линейкой и сегодня считаются весьма интересными, и вот уже более ста лет это традиционный материал школьного курса геометрии.
Одной из самых ценных сторон таких задач является то, что они развивают поисковые навыки решения практических проблем, приобщают к посильным самостоятельным исследованиям, способствуют выработке конкретных геометрических представлений, а также более тщательной обработке умений и навыков. А это в свою очередь усиливает прикладную и политехническую направленность обучения геометрии. Задачи на построение не допускают формального к ним подхода, являются качественно новой ситуацией применения изученных теорем и, таким образом, дают возможность осуществлять проблемное повторение. Такие задачи успешно могут быть связаны с новыми идеями школьного курса геометрии (преобразованиями, векторами).
Геометрические построения могут сыграть серьезную роль в математической подготовке школьника. Ни один вид задач не дает, пожалуй столько материала для развития математической инициативы и логических навыков учащегося, как геометрические задачи на построение. Эти задачи обычно не допускают стандартного подхода к ним и формального восприятия их учащимися. Задачи на построение удобны для закрепления теоретических знаний учащихся по любому разделу школьного курса геометрии. Решая геометрические задачи на построение, учащийся приобретает много полезных чертежных навыков.
Объектом исследования квалификационной работы является процесс обучения геометрии.
Предмет исследования – различные методы решения задач на построение.
Цель данной работы – разработка обучающего модуля по теме «Методы решения задач на построение». Предлагается способ формирования у учащихся знаний и умений через решение системы геометрических задач на построение (коструктивных задач) с помощью различных методов.
Наиболее эффективным способом формирования умений является подбор специальных задач. Кажущаяся простота конструктивной задачи только усиливает к ней интерес учащихся, желание найти решение, которое порой требует умственного напряжения и изобретательности.
Цели и задачи экологического образования дошкольников
Самоценность дошкольного детства очевидна: первые семь лет в жизни ребенка - это период его бурного роста и интенсивного развития, период непрерывного совершенствования физических и психических возможностей, начало становления личности. В этот период закладываются основы взаимодействия с природой, ...
Социальное общение подростков и пути гармонизации
общения
Социальная среда подростка расширяется и меняется. Не только классный коллектив, семья, ближайшее окружение составляют его социальный мир. Особенно существенно в подростковом возрасте меняются социальные сети. В них он может проявлять себя в разнообразных ролях, позициях и условиях, как позитивных, ...
Компьютерное моделирование по атомной физике
На сегодняшний день разработано множество графических пакетов и оболочек (Соrel, 3D-Studio, Power-Point, Macromedia Flash, Micro-Cap и др.), позволяющих решать конкретные практические задачи с помощью ЭВМ без знания языков высокого уровня. По нашему мнению, наиболее приемлемыми для использования в ...
Задачи, стоящие перед высшей школой, требуют ее всестороннего совершенствования.
Инновационные процессы, идущие сегодня в системе образования наиболее остро ...