На кружковых занятиях школьников обязательно надо учить ориентироваться в незнакомых ситуациях и областях, решать задачи на незнакомую фабулу, с непривычным для них математическим содержанием. Темп проведения кружковых занятий должен постепенно возрастать. Нецелесообразно на занятиях кружка проводить систематическое повторение ранее пройденных вопросов, так как основная задача кружковой работы - развитие творческого подхода, повышение уровня математической подготовки, но не сообщение учащимся определенных математических фактов, подлежащих обязательному усвоению. Учитель на занятиях не должен стеснять инициативы и находчивости учащихся в поисках решения задачи, облегчения вычислений. Кроме того, для занятий необходимо подбирать такие задания, которые представляют собой развитие типовых задач, предусмотренных или непредусмотренных программой.
К занятию учителю необходимо готовиться. Следует обдумывать план каждого занятия кружка, учитывая разнообразие методов работы с учащимися. Включать в этот план отдельные фрагменты бесед учителя, рассказов, выступлений учащихся с короткими сообщениями по истории математической теории, биографии ученых, интересными решениями задач, сообщениями о самостоятельных “исследованиях” и так далее. Это поможет обобщению опыта внеклассной работы, систематическому улучшению ее организации и методики.
Учителю, решившему создать на базе своего класса математический кружок, не обязательно продумывать методику работы самому. В этом могут помочь методические пособия, разработанные различными авторами. Однако, как правило, в них описана система работы лишь на один учебный год. Учителю в таком случае трудно обеспечить преемственность кружковых занятий. Одним из немногих авторов, решивших эту проблему, является В. П. Труднев (95). Мы представляем примерное тематическое планирование кружковых занятий с 1 по 3 класс.
Цель и характер проведения математических вечеров (утренников) несколько отличны от обычных целей и привычного образа действий, когда учащийся “занимается” математикой ¾ решает задачи, доказывает теоремы, выполняет геометрические построения или является зрителем и слушателем литературно-художественного вечера.
Прежде всего, на таких вечерах, как правило, присутствуют не только те учащиеся, которые проявили свои способности в математике, но и школьники, которые такого интереса к математике еще не имеют, а их успехи по этому предмету весьма скромны. Степень их участия в математическом вечере зачастую ограничивается лишь таким видом деятельности, который прямо не связан с предметом: подготовкой оформления вечера, выпуском газеты, исполнением ролей в инсценировках, подготовкой билетов и премий, декламацией стихотворений, раздачей материала для игры и так далее.
Организация математических вечеров для школьников младшего возраста имеет своей целью:
¾ заинтересовать предметом;
¾ представить серьезные математические идеи в занимательной форме;
¾ вызвать удивление, желание помечтать;
¾ вызвать стремление самому сформулировать и решить задачу.
Конечно, нужно при этом помнить, что чрезмерное увлечение занимательной стороной математики не даст желаемого результата. На одних шутках и внешних эффектах не привьешь учащемуся настоящего и устойчивого интереса к занятиям математикой.
Ценность математических вечеров не только и не, сколько в их математическом содержании, сколько в характере деятельности на этих вечерах. Это вечер, на котором дети фантазируют, учатся рассуждать, правильно мыслить и говорить. Таким образом, время, проведенное на математическом вечере, для учащихся работает не на одну только математику, а имеет общекультурную ценность и воспитательное значение.
Формы математических вечеров бывают разными. Они могут проходить в виде
¾ викторин,
¾ КВНов,
¾соревнований одной группы учащихся с другой,
¾утренников.
При этом содержание вечера не может ограничиваться одними лишь математическими вопросами. Математическая тематика предстает перед учащимися в игровой форме ¾ в виде ребусов, кроссвордов, викторин, занимательных вопросов и ответов, загадок, софизмов и тщательно замаскированных ошибок в рассуждениях, которые учащиеся должны обнаружить, и другие.
Занятия такого вида вызывают острый интерес у учащихся, дают им возможность вдоволь пофантазировать, опираясь как на интуицию и здравый смысл, так и на рассуждения, подчиняющиеся логике, принятой в математических доказательствах.
Использование мультимедийных технологий в школе
Использование мультимедиа технологий в учебном процессе позволяет: - Организовать оптимальное сочетание мотивационных и наглядных параметров учебного материала. - Провести учет характеристик динамики работоспособности учащихся. - Организовать подготовка и проведение урока с учетом особенностей восп ...
Особенности догматического, объяснительно-иллюстративного, проблемного, программированного,
развивающего и модульного обучения
Догматический тип, берущий свое название от догм (догматов), в виде которых представлено осваиваемое учебное содержание, является давней историей образования. Средневековый катехизис, монастырская зубрежка являются классической формой его проявления. Однако рецидивы догматического обучения встречаю ...
Воспитание внешних чувств
Что касается внешних чувств, то сторонник сенсуалистической психологии, которая в основу всех деятельностей души полагает ощущения, Руссо придает развитию их важное значение. "Первые способности, развивающиеся и совершенствующиеся в нас, суть чувства. Значит, их нужно образовывать прежде всего ...
Задачи, стоящие перед высшей школой, требуют ее всестороннего совершенствования.
Инновационные процессы, идущие сегодня в системе образования наиболее остро ...