Результаты анкетирования учителей показали, что учителя начальных классов практически не проводят внеклассных занятий по математике, не уделяют им должного внимания. Проводя устные беседы, мы выяснили, что причина тому ¾ недостаток времени. Программы насыщенные, предметов становится все больше, а число учебных часов не увеличивается. Многие учителя не видят возможности проводить внеклассные занятия из-за высокой загруженности учеников и их повышенной утомляемости к концу учебного дня. Эти причины объективны, проблема перезагруженности учеников действительно существует в современной начальной школе, но и проблема развития математических способностей не исчезает. И хотя в настоящее время, время повсеместного внедрения различных систем развивающего обучения, развитие математических способностей обеспечивается самим процессом изучения школьного курса математики, не стоит пренебрегать и внеучебными средствами, содействующими укреплению и расширению математической активности ¾ внеклассной работой по математике.
Принимая во внимание указанные выше проблемы, возникающие у учителей при проведении внеклассных занятий по математике, мы выделили такую форму внеклассной работы, которая не затрачивает много времени и не требует большой мобилизации умственных сил. Такой формой внеклассной работы по математике мы считаем выпуски математических газет. Однако подобная работа учителями начальных классов, судя по нашему исследованию, не проводится вообще. Возможно, причина этого в недостаточной методической разработке подобного рода занятий. При анализе учебно-методической литературы мы не раз встречали описание самой математической газеты, но нигде не нашли подробного описания самой работы над газетой, последующей работы класса с газетой и методики подведения итогов работы класса.
Наиболее распространенным среди учителей оказалось введение элементов занимательности в сам урок математики. Это наиболее простая, но в то же время действенная форма внеклассной работы, ведь она позволяет достигнуть главной цели в период первоначального развития математических способностей ¾ развития интереса к математике, потребности заниматься ею.
Таким образом, проблеме развития математических способностей в начальной школе на практике уделяется совсем мало времени, а перед некоторыми учителями такая проблема не стоит вообще. Тем более важной мы находим свою работу, это и придает ей актуальность, этим и объясняется наша заинтересованность ею.
Большинство детей любят математику, им нравится заниматься ею, в этом они находят удовольствие. Так же большинство вовсе не считают этот предмет трудным, а, напротив, относят его к числу наиболее легко дающихся. Это все говорит о том, что интерес к математике у детей в этом возрасте достаточно высок, и учителю важно, чтобы ребенок не утратил его в процессе школьного обучения, а преувеличил, чтобы интерес перерос в страстную увлеченность, в потребность заниматься математикой. А для плодотворных занятий должна быть создана плодотворная почва, то есть ребенок должен обладать определенным набором знаний, умений и навыков, а для этого и необходимо развивать его математические способности.
Содержание и анализ экспериментальной работы.
Опытно-экспериментальная работа была проведена в трех вторых классах, обучающихся по системе “Школа 2100” в общеобразовательных школах города Ярославля № 20, № 42 и № 81.
2 «Г» класс школы № 81 ¾ экспериментальный;
2 «Б» класс школы № 20 ¾ экспериментальный;
2 «А» класс школы № 42 ¾ контрольный.
Всего в классах обучается: 2 «Г» ¾ 20 человек;
2 «Б» ¾ 24 человека;
2 «А» ¾ 34 человека.
Цель исследования: выявить уровень развития математических способностей учащихся, при обучении которых применялись различные формы внеклассной работы по математике.
Первичный констатирующий эксперимент.
Для выявления уровня математических способностей школьников была использована серия из 24 задач, в основу которой положена методика А.З. Зака. Данная методика была нами выбрана не случайно. Согласно определению математических способностей, мы выявляли выраженность некоторых их компонентов у учащихся. Все задачи можно отнести к той группе заданий, для решения которых не требуется никаких специальных знаний, но нужно умение логически рассуждать, проявляя при этом известную изобретательность. Так, группа из первых четырех заданий позволила определить способность к обратимости мыслительного процесс ¾ способность к перестройке направленности мыслительного процесса, к переходу с прямого на обратный ход мысли. При этом задания усложняются от 1 к 4. Задания с 5 по 10 представляют собой систему задач с постепенной трансформацией из конкретного в абстрактный план. Дети должны заметить структурную общность этих задач с предыдущими. Они позволяют определить способность решать задачи в общем виде, отвлекаясь от конкретных данных, также позволяют определить способность к оперированию числовой и знаковой символикой. Эти же цели (кроме последней) преследует и следующая группа задач, задачи с 11 по 16. Кроме того, при их решении дети должны не поддаться непосредственному впечатлению от их условия, выделить в задаче лишь отношения. Задачи 17 и 18 позволяют определить уровень развития рефлексии, способность учащихся контролировать свою работу. Задачи с 19 по 22 определяют уровень развития действий в уме, способность планировать ход и этапы своего рассуждения. Кроме того, задания этой группы достаточно сложны и запутанны, содержат большое количество данных, сложные отношения. И, наконец, задачи 23 и 24 с взаимопроникающими элементами. В основу их положена мысль Б.Журавлева о “математическом зрении” как способности ”видеть на чертеже не только то, что бросается в глаза, но и все то, что на нем вообще есть”. Эти задачи направлены на исследование некоторых особенностей аналитико-синтетического восприятия геометрических фигур учащимися, в частности, умения рассматривать и оценивать взаимопроникающие элементы геометрических фигур с различных точек зрения, выделять элементы фигур и фигуры из фона, включать один и тот же элемент в различные фигуры и соответственно давать ему различные интерпретации.
Метод моделирования в преподавании физики основной школы
Моделирование, как способ научного познания реальности, давно стало одним из наиболее мощных средств науки. Само слово "модель" было известно очень давно, первоначальное значение слова было связано с архитектурой. В эпоху средневековья оно обозначало масштаб, в котором выражались все проп ...
Детские дома семейного типа
Детский дом семейного типа является принципиально новой формой воспитания осиротевших детей. Его можно в некоторой степени отнести к приемной семье, в которой ребенок может находиться только определенное время. В детском доме семейного типа все устроено таким образом, что роль родителей выполняют с ...
Особенности художественного творчества дошкольников
Творчество дошкольника имеет свои особенности. Дети делают множество открытий и создают интересный, порой оригинальный продукт в виде рисунка, конструкции, стихотворения и т.п. (Е.А.Флёрина, Г. В.Лабунская, М. П. Сакулина, К.И.Чуковский, Дж.Родари, Н.А.Ветлугина, Н. Н.Поддьяков и др.). Новизна от ...
Задачи, стоящие перед высшей школой, требуют ее всестороннего совершенствования.
Инновационные процессы, идущие сегодня в системе образования наиболее остро ...