Опытная проверка разработанных материалов

Страница 2

4) Решить задачу и сделать проверку: "Турист проехал в 7 раз большее расстояние, чем прошёл пешком. Весь путь туриста составил 24 км. Какое расстояние турист проехал?"

Эта работа была предложена на дом, чтобы ученики при выполнении задания, с одной стороны, не были ограничены во времени, а с другой стороны - чтобы у них была возможность использовать справочную литературу, обсудить задания друг с другом, с родителями и т.п.

Результаты работы позволили констатировать низкий уровень сформированности умений и навыков самоконтроля и самопроверки. (из 26 человек, выполнявших задание, полностью справились с ним лишь двое. Не справились с проверкой вообще 20 человек. Наблюдался, в основном, построчный характер проверки - пересчитывание.)

Большая часть заданий была выполнена, но без проведения проверки. Исключения составили 1 и 3 задания. В первом задании некоторые ученики выполнили проверку обратным действием, а в третьем - воспользовались определением корня уравнения (подставили полученное значение переменной в данное уравнение).

В процессе проведения опытной проверки систематически в материал урока включались упражнения, направленные на формирование и развитие умений и навыков самоконтроля и самопроверки, указанные в §2 главы II.

Планируя проведение работы по формированию и развитию навыков самоконтроля, наиболее целесообразным представилось включение вопросов, связанных с проверкой и самопроверкой, в уроки, предшествующие самостоятельной или контрольной работе, т.к. в этот момент сильным мотивом в пользу освоения приёмов проверки и самопроверки служит невозможность воспользоваться готовым ответом в учебнике (задачнике).

Расскажем по порядку о последовательности работы по формированию каждого приёма самоконтроля.

I* арифметические вычисления:

При проведении устных вычислений (например, 0,5 + 0,8 6,3) учитель убедился, что довольно часто учениками допускаются ошибки. Использовав ситуацию, учитель показал первый способ проверки правильности арифметических вычислений - обратное действие. Этот способ известен ученикам из курса начальной школы, поэтому больших трудностей у них не вызвал.

Для закрепления этого материала учитель предложил ученикам в последующих примерах выполнить самопроверку сначала коллективно с проговариванием

Например, в результате решения примера 0,5 0,2 + 7 получили ответ 7,1. Проверка обратным действием: последнее действие - сложение, обратное ему - вычитание. Из суммы 7,1 вычитаем известное слагаемое 7, получаем 0,1. 0,1 получено умножением двух чисел, обратное действие - деление. Чтобы найти неизвестный множитель, надо произведение 0,1 разделить на известный множитель 0,2: 0,1 : 0,2 = 0,5. Вычисления выполнены верно.

После коллективного проговаривания ученикам были предложены примеры, в которых надо было сделать самопроверку самостоятельно (про себя). На следующих уроках учитель систематически включал в систему заданий упражнения, направленные на формирование и развитие умений и навыков самоконтроля.

Постепенно форма заданий менялась: исчезло указание на выполнение самопроверки, хотя фактическое выполнение этого действия не отменялось (подразумевалось). И если некоторым ученикам приходилось напоминать о выполнении самопроверки, то для других это становилось действием, завершающим процесс выполнения задания.

По аналогичному плану проводилось ознакомление учеников с двумя другими способами проверки правильности выполнения арифметических действий:

- проверка повторным вычислением (по возможности - другим способом):решение:

2,7 6,2 - 9,3 1,2 + 6,2 9,3 - 1,2 2,7 = 2,7 (6,2 - 1,2) + 9,3 (6,2 - 1,2) =2,7 5 + 9,3 5 = 5 (2,7 + 9,3) = 5 12 = 60;

проверка (другим способом):

2,7 6,2 - 9,3 1,2 + 6,2 9,3 - 1,2 2,7 = =6,2 (2,7 + 9,3) - 1,2 (9,3 + 2,7) = =6,2 12 - 1,2 12 = 12 (6,2 - 1,2) = 12 5 = 60.

- проверка прикидкой возможного ответа:

решение: 0,94 10,6 + 8,34 = 18,304;

проверка: 0,9 10 = 9, 9 + 8 = 17.

Позже рассматривались примеры, в которых проверку можно сделать не одним, а двумя или даже тремя способами.

Например, (4 - 2,5 0,6) : 2,5 - 0,5 = 0,5.

Проверка обратным действием: 0,5 + 0,5 = 1; 1 2,5 = 2,5; 4 - 2,5 = 1,5; 1,5 : 2,5 = 0,6. Вычисления выполнены верно.

Проверка повторным вычислением может осуществляться на калькуляторе.

Страницы: 1 2 3 4 5 6


Организация и проведение природоведческих экскурсий с целью развития бережного отношения к природе у старших дошкольников
Цель формирующего этапа эксперимента - выявить педагогические условия, обеспечивающие успешное формирование бережного отношения к природе на природоведческих экскурсиях. Задачи формирующего эксперимента: 1) разработать комплекс природоведческих экскурсий по повышению уровня бережного отношения к пр ...

Сопоставительный анализ принципов орфографии русского и дагестанских языков
Практика показывает, что при обучении учащихся начальных классов многонациональной школы русскому правописанию трудно определить сходство и различие в орфографическом материале русского и дагестанских языков. Результаты синхронно-сопоставительного анализа дает возможность выявить те трудности, с ко ...

Научное исследование в педагогике, его основные характеристики. Методы и логика педагогического исследования
Методы исследований – это способы познания объективной реальности, являющиеся средством получения и анализа информации об объекте исследований. Существенным фактором развития педагогики является постоянное пополнение и совершенствование методов ее исследования. Обогащение педагогической науки новым ...

Теория обучения в высшей школе

Теория обучения в школе

Задачи, стоящие перед высшей школой, требуют ее всестороннего совершенствования.

Школьный интернет-сайт

Школьный интернет-сайт

Инновационные процессы, идущие сегодня в системе образования наиболее остро ...

Разделы

Copyright © 2025 - All Rights Reserved - www.cerbas.ru